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SUMMARY

Completely symmetrical elastic systems are analysed in
the vicinity of critical states which are realized simulta-
neously or nearly so by all the coordinates of deformation.
It 1s shown that uncoupled and coupled modes of elastic
deformation may occur in equilibrium and in motion., Sta-
bility of the systems is examined under conservative
conditions and several criteria are obtained for the onset
of motion from unstable equilibrium states when conditions

of symmetry prevail within the systen.
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INTRODUCT ION

Many two- and three-dimensional structural systems fall
into the category of the so-called completely symmetrical
discrete systems which consist of a finite number of elastic
elements (the simplest type may be a prismatic rod). defor-
mation of such systems may be described completely by a
finite number of coordinates which represent rotations and
displacements in space at some point or station on the elastic
body. The generalized coordinates may therefore take positive
and negative values. A system is said to be completely sym-
metrical if its total potential energy functional is inde-
pendent of the sign in the variations of these coordinates.
One such example are pin-jointed elastic systems under con-
servative loading conditions, e.g. slender trusses, space
frameworks, reticulated surfaces and domes, to mention a
few,

Systems of this kind possess several distinct properties
which dominate their behaviour in equilibrium and in motion.
Realization of unstable equilibrium states under conservative
conditions and the capacity of a system for converting its
total potential into kinetic energy from such states may be
the most important properties from a pragmatic point of view,
The first onset of elastic instability may occur in a critical
state at no or very little prior deformation when branching
of unstable equilibrium configurations becomes possible. Of
particular interest are systems in which all or a dominant

set of equally critical generalized coordinates are realized




-3~

simultaneously or nearly so. Under perfect conditions this
may occur in an all-critical state, but in the presence of
distinct types of geometrical deviations or imperfections
several critical states may accumulate in the proximity of
one another., In either case several patterns of elastic
deformation may result. Otherwise uncoupled modes of elastic
deformation may thus be coupled in a simultaneous onset of
elastic buckling. Branching equilibrium paths may be also
stable, so that buckling is notalways accompanied by unstable
motion, Forms of coupled equilibrium paths have been studied
recently by Chilver1 and Suppleo2 These authors point out
that highly non-linear equilibrium paths may exist in the
proximity of two adjacent critical states.

The present paper discusses the forms of equilibrium
paths in the vicinity of an all-critical state and the sta-
bility of completely symmetrical systems in the so-called
coupled modes of elastic buckling. Geometrically imperfect
conditions which may give rise to accumulation of several
eritical states and therefore to stable and unstable coupled
buckling are examined on systems with two degrees of freedom,
The paper also points out in a few systematic steps a general
method by which stability or instability of coupled or any
other equilibrium paths may be determined when energy losses

in the process of buckling are negligible.
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PERFECT SYSTEMS

1. REPRESENTATION OF DISCRETE SYSTEMS

The system consists of an elastic body which is composed
of discrete elastic elements or stations connected in some
way so that the aggregate constitutes a physical structure.
The body 1s sublected to a conservative field of force, and
it is conceived in such a way that interaction with this
field occurs at discrete points within its structure. Usu-
ally these points are coincident with the Jjoints between
the constitutive elements but not necessarily so. The
masses in the system are then concentrated at the points of
application of the field of force. An example may be a
reticulated surface which consists of light bars or a shell
represented by discrete localized elastic stations connected
together so that concentrated masses are localized at the
points of connection.

Elastic deformations of a discrete system are defined
by a finite number of quantities Qi referred to as the gen-
eralized coordinates of deformation. This concept is not
new, and it was in current use already in the last century
(e.g. Lagrange). Generalized coordinates may represent
rotations or displacements at localized points on the body.
Thus the elastic energy 1is completely defined by the co-
ordinates Qi' 1=1,2,...50,

We relate the generalized coordinates of the system to
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the field of force using the concept of conservation of
energy. Denoting the total energy of the system by E we
have between states I and II
§E = §U + SH + T + 6 (85, +Js,) (1)
Here
JU....change in elastic energy
JH....change in potential energy in the field of force
dT....change in kinetic energy
583...entropy flow from the exterior
&Si,..entropy production in the interior
8 ....absolute temperature
Let
8V = 8u + JH (2)
the change in the total potential energy of the systen.,
Contemplating conservative systems with negligible entropy
changes, (1) reduces to
fE =V + 4T =0 (3)
If the change 0T vanishes between two limiting states I and
IT then the system is either in a state of uniform motion or
in a state of statical equilibrium. The necessary condition

for equilibrium is therefore

&v%l =0 (%)
i.,e. that the total potential energy function has a station-
ary value,
The field of force 1s defined in localized regions at
discrete points of the system, The amount of work necessary

to displace a concentrated mass in this field by a small
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amount Ssk, k=1,2,3 between two ad jacent points on a path is
given by

0H = - Fy &skg sum on k (5)
where F, is defined as the local force of the field. The
field is sald to be locally conservative if this work is
independent of the path taken,but it depends only onits termi-
nal points, Substituting into (2) we obtain

8V = 8U - Fy . &5y (6)

The summation now extends over all the components at dif-
ferent points in the system. In applications potential
fields are usually uniform so that the gradient vectors are
parallel or constant locally. However, in different regions
these vectors need not be parallel to one another.

Consider first the particular case when these gradients,
and therefore the localized conservative forces, are propor-
tional to a single parameter P, It is assumed that the
displacements SSk are a direct consequence of elastic defor-
mation and therefore functions of the generalized coordinates
Qi; Then (6) may be written

éf;.= EE_ - F EEE (7)
39 3Q; | EYIQ |
1,5=1,2,...9n
Since now Fy is also a function of P, the total potential
energy function V takes the form
V=V(PQ) s 1=1,2,3,.00m (8)

In the continuation of this discussion we confine our

attention to systems which are symmetrical with regard to the

variations qy in all the coordinates Qi at a gilven state



defined by Q;° and P°. To this end we write
V=V +v=v(F° +p, Q° +aqy) (9)
The condition of complete symmetry requires that
vV (P° 4p, Q% +q) =V (?° +p, ° -q)  (10)
1 =1,2,,549n
Equation (3) may be written
§T = = v (3)vis
where v is measured from some fundamental state., Then 4T is
positive only when v is negative. If v is positive in the
entire ad jacent physical neighbourhood of this state kinetic
energy cannot be generated within the system. Consequently’
unstable motion may only develop from a state of equilibrium
at which the change in the total potential energy may become
negative;

This concept may be used to analyse the instability and
stability of elastic systems (Britvecé31960) if the variation
v of the total potential energy function of the system is
represented in a Taylor series by the increments Q4 in the
coordinates Qio Equilibrium paths are defined by condition
(4) which is equivalent to

bvy'bqi =vy =03 1=1,2,3,...,m (11)

To explore a general symmetrical system the energy

function V (P,Q;) is written in series form at a fundamental

equilibrium state Q;°,P°, Thus

4 1 4
v =Viay + %) V1301935 + F, Vir1939x + )y V13x191939k21 Foe
+ p [ V. +V qQ, + 1 v Q, Q, + coe
p* Vo1 4 T3y Vpig 9 9y

1 2 1
+2'p [Vpp“'vppi q1+2" vppij qi qj + 400 (12)

+¢ﬂ°00°0000!'
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sum on i,J,k,1 =1,2,,..,n
where V; = bV/bQi. Vpi;z X%;%;, etc. denote the partial deriva-
tives with respect to the coordinates Qi or q4 and p. Equi-
librium conditions in the state qy = 0 are satisfied if v, = 0,
1=1,2,...,n. If this state is realized at no prior deforma-
tion of the body, point (Po,Qio) must lie on the P-axis,
Consegquently p is not necessarily zero when q; = 0 and there-

fore

Vi =Vp1=Vpp1=-'eoooococoo=o (13)

Similarly; if no changes in the potential energy occur with-
out elastic deformation

v =V =V =ooo.oooooooo=o (138.)
P PP PpPPp

Then (12) reduces to

v =1 1 1
Vo= Vig%y 3y Vy90950 By Vygq939499) toeee
1
+ p[ E’ vpiJ qi qJ + oo (14)
+ C".......'.

When the variations ay are sufficiently small, the quadratic
form

1/21 VL1 q; 9y

determines the sign of v and therefore the stability of
equilibrium in the fundamental state.
This form is expressed as a sum of squares by introducing

in the fundamental state a set of eigenvectors b, which define

J
the axes of the local principal coordinate system uj. In the
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case of a symmetrical system this step is not essential in
the critical state only since the coefficients Vi‘1 vanish on
account of symmetry. However, in the subsequent stability

| analysis orthogonal principal systems play an important part,

. as 1t is convenlent to retain Carteslan coordinates whenever
possible; We recall briefly the essential steps in the
development of the necessary machinery.,

First, the eigenvalues )k of the local stability matrix

[Vij) or (vij] and the corresponding eigenvectors b, are

determined from

((Vyy) =X DB =0

and

l[‘v“] -)k1| =0
k=1,2,40.50

For all eigenvectors this condition becomes

[v“]n-n/\ =0

where the columns of B are the eigenvectors bk and the ele-

| ments of A , the eigenvalues xk' Ir bk are orthogonal unit

vectors in the directions of the local principal axes uk;

then B'B = I, where I is the unit matrix. Hence

B (vy,)B = A (15)

Putting q = Bu, the dominant quadratic form in the expression
for v becomes
T 2
e (Vyy)a=uwAu=) u =V,

sum on 1=1929 coogll

2



-10-

where now the coefficlients Vii represent partial derivatives

of V with respect to the new coordinates u At a new point

g
on the fundamental (or another) path the quadratic form
clearly resumes its non-diagonal form since the coefficients
Vij increase or decrease from zero, Therefore; if again
local orthogonal principal axes are introduced at the new
point, these axes are rotated in relation to the orthogonal
axes at the previous point. It can be shown that only one

quadratic form in the series may be diagonalized using a

single set of orthogonal eigenvectors if no restrictions of

commutation are to be imposed on the matrices in other forms.,

The series (14) is now similar except that the q, are
replaced by the uy and that the derivatives are evaluated
with respect to the new coordinates., The coefficients )\,
usually referred to as the local stability coefficients, are
assumed to be initially positive on the P-axis,

Suppose now that all the stability coefficients Ak
vanish simultaneously in a critical state. The coordinates
u, are then said to be all-critical, The energy expression
(14) takes a particularly simple form since all the deriva-
tives of V with respect to the odd powers of u, vanish on

i
account of complete symmetry.
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2, EQUILIBRIUM STATES

The first order equilibrium conditions for the completely
symmetrical system are derived from (11) and (14), Putting
Vii = 0, 1=192’°nc9no

1 2 1 3 (16)
Vo( - E'! Vddiiudui + 3! de“dud + p[vwaud + ooon] + 000 0= 0
The trivial solution uy = 0, &=1,2,...,n implies that the P-
axis 1s an equilibrium path. Other uncoupled solutions are
possible, i.e. uy # 0, u, =0, 1i=1,2,00..on, 1£X. These occur

in the coordinate planes (p,uy) and take the approximate form

(

N

1 3
'+§!)Vdmud\ +p°Vpd°(uu+...=O

The non-trivial solution is obtained on eliminating p from two
equations Vi = 0 and vzs = 0, o(=1,2,..'.,,n, o # X and putting
W~ =x; and ¥ = 1, Thus (n-1) linear equations are obtained

in the form

1 1 1 _

(31 Vo11%and = 21 VpoaV11aa®oe ¥ 33 (Vo1 %ois = Vpu V1104 %1
t v v lvov (17)
31 Vps'1111 T 21 Vpit'oxi1’Fy

sum on 1=293’”ooavpn: 1#“

where x1 is now a reference coordinate; The solution takes

the form

X =C X H k=293|;ooopn (18)

Ck1 are known constants, The path parameter is then given by

= - ot (L 1
i Vp11 (3! Vi111 * 51 V1141 Cyq) X4 (19)

sum on i=1,2,.°;,n
with Vpy < 0.
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The orthogonal projection of the coupled path in the
(p,xl) plane is a line and in the (p.ul) plane a parabola,
Figures 1 and 2, It can be shown that the rising paths may
now be stable or unstable, whereas the falling paths are
always unstable. In a given mode of buckling all the co-
ordinates of deformation are coupled to the same order of
magnitude. In many systems the coefficients V1133 may
assume several sets of values in the all-critical state;
therefore several modes of buckling, involving the general-
ized coordinates in different ways, may be possible., A
particular class of such systems 1s described in references

b and 5,




P
STABLE
————— UNSTABLE
- X
0 |
FIGURE I, AP=0
- u|

0
FIGURE 2, AP=0
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4, SEVERAL LOAD PARAMETERS

Sometimes it 1s of interest to explore the system when
the field of force at different points of application depends
on several independent parameters P;. Consider, therefore,
the case when the number of load parameters corresponds to
the number of degrees of freedom expressed by the coordinates
uy, so that any state of deformation defined by uy may be
also a state of equilibrium under a corresponding set of
parameters P;, This correspondence 1is considered in the
behaviour of the system near the all-critical state, Accord-

ing to (6) and (7) we have for equilibrium

o~
o/

v U 8
—— i m— = P P __k.=0 (21)
Uy Uy x (F1) duy

d "-—"1,2’-. .‘..n
where now differentiation 1s with respect to the coordinate

Uy« Using the concise notation this may be written

v, =Ug = F (Py) (5,), =0 (21a)
l,0=1,2,,..,n
sum on k=1,2,.,.,n
If the conservative forces Fk are functions of the parameters
Py, 1=1,2,...yn, the n equations (21) contain n independent
quantities and they may be, therefore, differentiated par-
tially with respect to a coordinate 56' This also means
that, given a set of coordinates qx,«i=1.2,...,n. which
define the deformations of the elastic body in a state adja-

cent to the fundamental state considered, n forces Fy (or
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parameters Pl) can be found from these equations so that
equilibrium of the system in the ad jacent state is possible.
(It is assumed here that the relationships between F, and Py
are such that Py are the real roots of Eq. 21 and also that
no singularities are associated with the ad jacent state, so
that all the partial derivatives evaluated in this state are
finite.) Differentiating now Eq. (21 with respect to u, we

obtain that on an equilibrium path,

U (py) Dok kP13
Sy, duy T Tk V17 Fudu, T 3P dup oy
or
ka
Ud[_,, - Fk (Pl) (skLp bP (Plp (sk)o( =0 (22)
Therefore WWS may be expressed along an equilibrium path by
oF
Yap =5-15-115 (Py)y (oot (23)

The ad jacent statés of equilibrium are now realized by means
of slight changes in the parameters Pl“ Since, in the all-
critical state, vot(b = 0, it follows that in that state (sk)o(=
0, as the other quantities are generally non-zero, By (21)
then, also Ud = 0 at uy = 0, i.e. the rates of the correspond-
ing displacements of the points of force and the rate of the
internal energy with respect to the coordinates of deforma-
tion vanish in the all-critical state.

Equilibrium condition (21) may be written

bsk bxa
(S oxg - Pk 8%, Ju, - (24)

Therefore, if uy is generally non-zero,
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dV_ _ dU

bxd bgu

Fk'b—f;—o (25)

Further differentiation in states of equilibrium yields,

2 2
Uy ek %Pk Bk (26)
bxo( b% bxo(bx@ bxﬁ bxd

Then on a path of equilibrium states

2V JF, dS
X, 0% =bxkb < (27)
«°%p f %o
Substituting into (20) we get,
dFy ds
_ 1 OFg sy
V—z-zz-x—p-rxd-%xd + o0 (28)

If the parameters Pl are identified with the forces Fk’ the

last result may be written

=1 & _
ve=L &F Sspe + oo cum on Kel,2,....n

Hence we deduce

Theorem (1): The all-critical equilibrium state of a com-

Pletely symmetrical system is unstable if in an ad jacent
equilibrium state, defined by the corresponding displacements
8sk.- vV = %‘, d‘Fk e 6Sk

is negative, where the system may be maintained in equilibrium
by the forces F, + OF,.
Theorem (ii): If in all adjacent states of the all-critical

state v = %8 ) Ssk

is found to be positive, equilibrium in that state is stable,
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(It is implied that equilibrium of the system may be realized
by the parameter changes SFk in the entire physical space uy,
1=1,2,3,.4090n.) Neutral equilibrium may occur to the accu~
racy of the analysis if v = 0 in the ad jacent states. Special

forms of the last two theorems were obtained in reference 5.
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GEOMETRICALLY IMPERFECT SYSTEMS
COUPLED BUCKLING

An all-critical state may not always be realized under
geometrically imperfect conditions in an otherwise completely
symmetrical system. Presence of distinct types of imperfec-
tions may be responsible for slight differences in the criti-
cal stabllity coefficients %1' These imperfections need not
impair the conservative nature of the system; Ad jacent
critical states, corresponding to different generalized
coordinates, may, thus, accumulate on the fundamental equi-
librium path. In this way other equilibrium states may be
affected or generated so that several modes are coupled in a

simultaneous onset of stable or unstable buckling. Similar

situations may occur under perfect conditions in other elas-
tic systems which are not discussed at present. To demon-
strate the different equilibrium and stability properties of
slightly imperfect symmetrical systems prone to coupled
buckling, we consider the particular case of a system with
two degrees of freedom, when the variable local stability
coefficients Al and Az vanish at two ad jacent points on the

fundamental path.
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COUPLED EQUILIBRIUM PATHS

Forms of equilibrium paths of this type have been

1 and Supplez, and the reader 1s referred

analysed by Chilver
to their work concerning the equilibrium analysis which is
only referred to when essential differences in the methods
occur, It 1s an advantage to retain in the subsequent
analysis the local rotating Cartesian coordinates, since
otherwise analytical operations must be adapted to coordinate
axes with varying obliquity.
Let the dominant quadratic form in the expression (14)
for v be given by
(ag ap) (Vi3 Y12\ [a;
21 V22 | \22
where now the primed coefficients denote partial differentia-
tion with respect to qQq and qp. Suppose at the first critical
point on the fundamental path the stabillity coefficient )1
referred to the local principal orthogonal axes uy vanishes,
Then Al is the root of the equation
Vit - N Vo
g v =0 (29)
21 22 = N

i.e.

- (30a)
' ' ' t 2 ' ' 2

‘ ! ' ' 2 _
This occurs when -V11 V22 + V12 = 0, The second stability
coefficient is
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1, .+ 1, v t 2 v r 2
Ao = 20V11¥22) 4R(V13¥V52)" = Vg Vap *+ V32" = Vyg oz =

Voo > 0 (30b)

At this point‘Az is supposed to be positive. Unprimed
coefficients now denote partial differentiation with respect
to the new orthogonal coordinates u, . The dominant quadratic
form becomes in the new coordinate system

)1 u12 + Ay u22 = (uy u,) Viqy O u

0 V22 u,
and the expression for v, similarly to (14),

2

1 1 1
Vo= Vyg Uy 47 Vige Uy Uy v + Ry Vygpy Wy Uy U uy ot

p{%” vpij ui uj"'oooo. (31)

Consider now the possibility that in the local ortho-
gonal coordinate system the second stability coefficlent
(A, + &X,) vanishes. The local stability coefficlents at
the second critical point are the roots of the equation

V11 + 8v11 - (Ai +3A1) 8V12

=0 (32)
dVay Vo + 8Vpp = (N +82))

where V11 = 0, On the P-axis the first order variations are

8v11=v11pAP+' e} 8V22=V22pAP+. R and 8V12=Sv21=V12pAP+0 o

where V11p = 33V/bu126p. etc, and AP is the parameter dif-
ference between the two critical states., Putting i = 2,
8V21 8V22 = &2

=0
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If all the variations aviJ are of the same order, the first
order solution yields
-V22 (8V22 - 8)2) =0

Hence

8hp = 8Vpp 2V 55 AP + ... (33a)
and similarly

Be definition, at the second critical point
Xz + SAZ = Véz + szzAP + see = 03
therefore,

The approximate equilibrium equations of the two-degree of
freedom system may be deduced from (31) using (11) and the
last result, i.e.
"1 2 2 -
ug [ 51 Vaaag ®4° + 3Vp100 9°) + Vg4 p| =0
(35)
2)

1 2 -
Uy (51 (Vo222 U2° + 3Vyg0p 4") + Vppp (P - AP)] =0

Eliminating p,

2 2
(Vi111Vp22 = 3V1122Vp11 701" + (3V1122Vp22 - Voz22Vpy1)up =
- 31 Vp11Vp22 AP (36)

Since now the local eigenvectors are orthogonal, elimi-

nation of uy from these equations yields the orthogonal

projection of the coupled path in the (p.uz) plane, Thus
1
P(Vy111Yp22 = V1122 Vp11) = V9111 Vp22dP = 3y (Vy44 Voo -

2. 2
V1122°) 1 (37a)
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and similarly the orthogonal projection in the (p,u;) plane,

(P - 8P)(3Vy155 V22 - Vo222 Vp11) = Vo222 Vp11 8F +

1 2, 2
1 (V1111 Vo222 - V122 ) Wy (37b)

Equilibrium equations obtained in this case by Chilver
and Supple using Cartesian analyslis and coordinate axes with
varying obliquity are the same to the first order accuracy

on account of symmetry, V being fortuitously zero; The

pl2
uncoupled equilibrium paths are obtained from (35) on setting

alternatively u, = 0 and u = 0.
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6. STABILITY OF EQUILIBRIUM IN THE COUPLED MODES OF BUCKLING

Stability of an equilibrium state at constant value of
the load parameter depends on the local change Av in the total
potential energy with respect to the local variations h1 in
the generalized coordinates Ug e Generally the local equil-
librium is non-critical; therefore it suffices to represent
this change by the dominant quadratic form in the localized
neighbourhood of the equilibrium point, If AV assumes a
negative value for at least one independent variation hi;
then by (3)bis conversion of the total potential into kinetic
energy is locally possible and therefore equilibrium at the

given point is unstable, Thus

1 .
V21 Y22/ \h2
The coefficlents v1j may be found from (31). Then; at point
- (paugyuy),
v =V u 2 + V u 2 + V
11 = Y1122 Y2 1111 %1 p11 P
Vip = V1 = Viq0n Uy Uy (39)

2 2
Voo = Vigpp By *+ Vpppp UpT + (P - AP) Vi,

We diagonalize this form by 1ntroducing the principal

coordinates Ci’ referred to the base of orthogonal unit eigen-

vectors b, at the point (ppu,yu,). If the columns of B are
the vectors bJ, then BTB = I. The corresponding stability

coefficlents Aj are the roots of the equation
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Vi - AJ Vi
=0 (40)
Y21 Voz = A3
1.e
2
N =% (Vg * V) St py  vp) vy vy +vyp? (Ba)
and

2 2
Ao = (vyy + ) f/[% (V41 + V22)" = V14V + V" (Mib)

The vectors bJ and the eigenvalues Aj are then related to the
local stabllity matrix [vij] by (15), i.e. BT [vij] B =

Moo
(01 )\2) =A . Putting h = BC s the expression for Av becomes

1 T 2
AV =5 b vy} n= 5 (T/\); S RN A W A B>

Then, if the system is in equilibrium at the point (p,ui,uz)
this equilibrium is unstable if either Al or Az or both are

negative,

According to (41a) and (4ib), three possibilities arise:

(1) - Vi1V22 * v122 > 0; then )\1 { 0, whether (v11 + v22)

is positive or negative.

(11) - v + 7122 { 0; then )‘1 £ 0 and )\2 < 0, provided

11722
that the discriminant is positive.

This reguires

(viq + 755K ‘ZL//V11 V22 v122 ‘

- - Y - 2 r4 A. At - - - - - _ o
V11722 + v12 < 03 then 1\1 > 0 and A2> 0 ir

- 2
(vl’1 +v22)> +2L/vu Voo = V4o ‘

(233 )
\4LdLL)

f

Otherwise )‘1 and), are not real., To determine the instability
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of an equilibrium path conditions (1) and (ii) must be
satisfied on that path. Similarly, on a stable path the
Stability condition (iii) must be fulfilled. Substituting
for the coefficients vij' to be evaluated on the paths, the
three conditions become:
(1) (& Voqqqu® + 2 Voo + V)| (p - APV, +
2t V11111 21 V112242 p11P/|'\P - p22
1 2 1 2 2 2. 2
21 V222292 * 71 Vi122Y ] < Vy122 W1 0y
Substituting further the equilibrium equations (35) into
this criterion we obtain on the coupled paths that
2. 2 2
Uy “u" (V1491V2200 = 9Vy42,°) < 0 (43)

where uy and u, are the coordinates of the path. Therefore,
if u1 and u, are non-zero, the first instability condition is
independent of the coordinates of the coupled paths and it
depends only on the constants V11119 V2222 and V1122 of the
system, If uy = 0 and u, # 0 the last inequality becomes an
identity which implies that at the particular point on the
path ), = 0 and ), = Vyq * Yy = % V2222u22 # 0, Therefore
at the points of intersection of the coupled path with the
(Pyu,) plane )\, is the critical stability coefficient. These
points correspond to the secondary branching points on the
uncoupled paths in the (p,uz) rlane. A similar conclusion
follows for the branching points on the uncoupled path in

2
the (p.ul) plane, when \; = 0 and AZ = % Vyg1q%4 ¢ Otherwise

Ay 1s always negative on the coupled path since (43) is then
of one sign, This means Al vanishes in the secondary critical

states but does not change sign. Therefore, the coupled path
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has stationary values at these points which represent
coincident equilibrium states, So far nothing is said about
the vanishing of Az,
(11) The second instability condition evaluated on the paths
requires
2 2 B
ug up” (Vy311Ve222 - 9V1122) > 0 (44)

and _
1 2 2 2 2 2
3V1111% * Vaz22% )< 'BIJ Vi111V2222 - 9V112@/£;7“2|(”5)

are again the coordinates of the coupled

where u1 and u2

paths; On completing the squares this expression transforms

to
2 2
- Vv \'4 2 Vv
Vinag|(uy 4 up [ P2 - 9 HER)T 4 g VllggZ'“22] <0 (k)
L =/ V1111 1111 1111
or to _ - > , v )
1111 1122 1122 2
\'4 (u2 + u ===t . 9 ==255) T 4+ 9 /7w u j}( 0
2222 i Ay V2222 Voop2° 1

In the equilibrium state u; = 0 and u, # 0 on the path )1 =0

2
and Xz = % V2222u2 < 0, Therefore Al is again the critical
stability coefficient at the points of intersection of the
coupled path with the (p,uz) plane, When u, = 0 and u, £ 0,

1 2

similarly, \q = 0 and Az =3 V5411%4 < 0. These points
correspond to the four branching states on the uncoupled paths
in the (p,uz) and (P,ul) planes;* Otherwise %1 and Az are
always negative on the coupled path which i1s therefore every-

where unstable, )\, may vanish if (45) becomes an identity
and if (46) vanishes, but the last condition can yield no

*The proof that the coupled and uncoupled paths meet and
that uncoupled paths may exchange their stability at secondary
branching points is omitted here,
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real solutions for uq and u, on the path;
(111) The stability condition written on the path is
2.2 2
Uy " (V19142222 = 9V11227) >0 (hh)bis

and

’ (47)
1 2 2yy , 2 2 2
3WVi11191" + Vazao¥p )0 + 3lJ/;1111V2222 - 9V1122~/£1 ug |

On completing the squares this becomes

v (u, - u 2222 . 9 )* +9 u >0
1111[ 1 2 T2 Tz 2
V1111 V1111 V1111

(48)

or ) v 2
A \ :
1111 1122 2 1122 2
2222 2222 2222

Conclusions regarding the secondary branching points when
M = 0 are similar as in the last case only now A, = %szzzuzz
>0, at u; =0, u, £0, and ), = %V1111u12> 0 at u, =0,
u, # 0., Otherwise %1 and )2 are positive everywhere on the
coupled path which is therefore stable.

The last three conditions lead to

Theorem (iii): If (V1111V2222 - 9V11222)> 0, then excluding

the critical states on the path, equilibrium of a two-degree-
of-freedom system in the coupled mode of buckling is stabdble
everywhere on the path provided V1111> 0 and unstable if

£ 0, where V and V2222 must have the same sign.,

Vi111 1111

We consider next several possible forms of coupled
buckling.
CASE (1) It 1is readily verified by (36) that the orthogonal
projection of the coupled paths in the (ul,uz) plane is an
ellipse if
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3 V1122Vp11 = V1111Yp22 > 0

3 V4122Vp22 = V2222Vp11 < O

The projection of the coupled paths in the (p,uz) plane is
convex upwards, (37a), if V1111V2222 - 9V11222 < 0. Then,

in the (p,ul) plane this projection is convex downwards;
Since this condition is synonymous with the first instability
condition; such a path is unstable, When V1111V2222 -
9V11222 > 0, the proJecfion of the coupled path in the (p,uz)
plane is convex downwards and in the (p,ul) plane upwards,
(37a) and (37b), If V

<0 and V < 0 the path is

1111 2222

unstable by the second condition, and if V 1 > 0and V

111 2222

>0 it is stable by the third condition.

Theorem (iv): If the higher uncoupled path of the system in

case (1) is rising, i1.e. if V 2 > 0, the lower uncoupled

222
rath must also be rising, 1i.e. V1111 > 0. The closed coupled
path is stable if
2
Vi111V2222 - 9V1122° > 05 wj,uz #0
and unstable if
2
Vi111V2222 = WV1122" < 0
Figures 3 and 4,

Theorem (v): If the higher uncoupled path of the system in

case (i) is falling, s €0y and the lower uncoupled path

v222
rising, V1111 > 0, the closed coupled path 1s always unstable
since
V...V -9V, ., 2<0; u,u, £0
1111 2222 1122 1°72
Theorem (vi): If both uncoupled paths of the system in case
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(1) are falling, the closed coupled path is always unstable.
CASE (1i): The projection of the coupled paths in the (uy,up)

plane 1s a hyperbola cutting the ul-axis. Then
3V4122Vp11 = V1111Vp22 > ©
3Vy122Vp22 = V1111Vp11 > O

In conjunction with (37a) and (37b) we deduce:

Theorem (vii): If both uncoupled paths are rising, i.e.

Vi111> 0» Vo225 >0, and V11222 0, the coupled path branch-

ing from the lower uncoupled path is also rising if V1111Vé222
- 9V11222>'0 and falling if this quantity is negative., Accord-
ing to Condition (1ii) the rising path is stable, critical
states excepted, and the falling path is clearly unstable.

Theorem (viii): If both uncoupled paths are falling, V1111<0,
V2222‘<0 and therefore V1122'<0, the coupled path branching
from the lower uncoupled path is falling. According to (43)
this path is unstable,

Theorem (ix): If one uncoupled path is falling and the other

rising; the coupled paths branching from the lower path are
always falling. Then condition (i), (43), is always satisfied
and the coupled paths are clearly unstable,

CASE (1i11): The orthogonal projection in the (ul,uz) plane

of the coupled paths is a hyperbola cutting the u,-axis. Then

3V1122Vp22 = V2222Vp11 < O
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From these i1nequalities and ﬁhe equilibrium conditions (36,
37 ) we deduce:

Theorem (x): If both uncoupled paths are rising, Vi111> 0

Vs222> 0 and V 2> 0, the coupled path, branching from the

112
higher uncoupled path, 1is always rising. Then, V1111V2222 -
9V11222< 0, and the rising coupled paths are always unstable,

Theorem (xi): If both uncoupled paths are falling, V1111<f0,

Vo200 L 0, and Vy455 '2 0, the coupled path, branching from
2
111172222 = V1122

2
1111V2222 - 9V1122 > 0, According to

conditions (1) and (i11) these paths are always unstable.

the higher uncoupled path, is rising if V
£ 0 and falling if V

Theorem (xi1): If one uncoupled path is falling and the other

1111 <0 V2022 0 0F V34492 0s Vpppp< 0y the

coupled paths, branching from the higher uncoupled path, are

rising, 1.e., if V

always rising. According to criterion (i) these paths are
always unstable,

These results demonstrate the existence of stable and

unstable coupled equilibrium paths and the occurrence of
secondary branching points in the proximity of two (several)
critical states in a system with two (several) degrees of
freedom., An exchange of stabilities does not necessarily
takehplace at secondary branching points on the coupled
paths, as it may on the uncoupled ones, Similar conclusions
regarding the rising and falling character of coupled paths
in a two-degree-of-freedom system were reached independently
by Supple. The author, however, does not analyse the sta-

bility of equilibrium in the coupled modes of elastic buckling.
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The instability or stability of the uncoupled paths, or any
other equilibrium paths in more complex systems, may be found

similarly according to the method outlined in this section.

it it 0 B o
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7. EXAMPLE

The theory is illustrated on a plane two-degree-of-
freedom system consisting of two elastic bars of initial
length L, Fig. 5. The moment of inertia I of the cross-
section of bar (2) is slightly higher than that of bar (1).
Thus, E12 = EI1 + EAI. The system is loaded with a vertical
load P, The first critical state occurs when the Euler load
is realized in bar (1) and the second, slightly higher, when
this occurs in bar (2). Then coupled buckling may result on
account of the geometrical discrepancy AI which may be

regarded as the "coupling imperfection” in the system. A

similar situation would occur if the initial lengths of the
bars were slightly different. The system may be analysed
similarly as in reference 4, (The reader is referred to
reference 4 for details of this analysis.)

It may be shown that the variation v in the total

potential energy from the first critical state equals

2 2 - 2 /=
= i1 b 16 2 2 Yall L = 2
9

- 1.2 1.2 b 1.2 2 i
*gp['l‘p%'lr“z'fg‘sﬁ’“n‘%“z'T%H“z*"'

where

S1 = %% (for bar 1)
AP = /slﬁzgﬁl......change in P between the two critical states
_ L
AP = LAP/S1
~2
P +... increment above p0 =‘/§ Uiigg
P = pL/S,



FIGURE 5

Lll
FIGURE 6
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Comparing this with (14), (31) or (35), we observe that now

3 V3 3
Vi, =0, V,, = %2 AP, Voo = ~YBi Vg, = - -%
7 (50)

2 2 ~2
a1 Y ALl _ T _ .
V1111 = ="8" Vooz2 = - "B V1122 = 3 Vp1111 = = éfg...etc.

The coefficients satisfy the inequalities in case (iii); there-

fore the coupled paths are hyperbolic., Since in this case

2 15 4
Vi111V2222 - MVi120” = - 8T < O, (51)
then according to Theorem (x1), the coupled paths are rising

and unstable. The result is shown in Fig, 6., The uncoupled

P=- Zéﬁ uy®
S AP - 752/3 a2

or in terms of the flectural contractions ey and e, and p by

e
P’“%"E%

AP-Z{-}-_PEE-%

L

paths are glven by

(52)

(53)

ke
]

where e/L = uz/h.
In practice the coupled modes in this case may be
realized only under controlled conditions, Usually the

system develops unstable motion in the lower uncoupled mode.
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CONCLUS IONS

In the case of a single load parameter several equi-
librium paths may exist near an all-critical state of a
completely symmetrical system. Uncoupled and coupled paths
are approximately parabolic in form when this state is
realized simultaneously by all generalized coordinates.
Rising paths, in this case, may also be unstable.

In the presence of distinct types of geometrical imper-
fections within the system accumulation of several critical
states may occur, This gives rise to other equilibrium
states which form continuous open or closed paths connected
to the uncoupled paths at the secondary branching points.
Occasionally coupled paths may be stable, but more often they
appear to be unstable. These conclusions are based on the
study of the two-degree-of-freedom-systems. Geometrical
deviations from perfection which may induce coupling
between two or several freedoms of deformation are referred

to as coupling imperfections. These should be distinguished

from other imperfections which only influence the uncoupled
modes of elastic buckling (e.g. references 6 and 7).

The stability analysis outlined in section (6) may be
extended to more complex systems in the same way, although
in the absence of order disparities in the coordinate space,
algebraic evaluation of local stability coefficients and the
corresponding instability zones may become involved beyond

systems with three degrees of freedom, However, numerical
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techniques may be envisaged in that respect; The method is
easily verifiable on simple model systems such as that in
section (7).

In the presence of a required number of load parameters,
equilibrium states in the vicinity of an all-critical state
may be realized within the physical coordinate space of the
system in an infinite variety of ways. Then, under controlled
conditions and negligible losses theorem (i) may be used to
measure the conversion of the total potential energy within
the system and thereby to establish experimentally its local

instability in a particular mode of elastic deformation.
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